If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+12u+4=0
a = 5; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·5·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8}{2*5}=\frac{-20}{10} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8}{2*5}=\frac{-4}{10} =-2/5 $
| 354.92/e=56 | | x+1(x)=3 | | -17g+12=-18-12g | | 9x+5+12x-19=180 | | -11+5f=6f | | 40−x/3=4+x | | -20-20m=20-6m-19m | | (2x+6)+(6x-50)=90 | | -8-8j=-5j+10-5j | | 5x+2+(16x+10)=180 | | (2x-6)+(6x-50)=180 | | -5m-8=-4m | | 5642/x=13 | | 3x-4+2x+7=163 | | x+2/3x+5/2x=180 | | -10p-1+10p=p-8 | | 3(s−15)=6 | | -31-4x=-5x-5(1+5x) | | 3(w+2)=6+3w | | -10+f=8-2f | | 12=2/7u | | 1/6x+8=-8 | | 2(3x+1)-x=27 | | 6x^2+5x−1=0 | | 2v=-10-3v | | 8y+15=9y | | 15-(9-m)=25 | | 14x=6+5x-3 | | -6k=2k-8 | | 3x+3.1=7 | | 7s-6=10-9s | | -8+5h=6h |